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Limitations of Classifiers 

¨  All of the classifiers we have studied have limitations:  if the 
problem is ‘interesting’, they don’t tend to perform perfectly. 

¨  Often these limitations stem from the inability of a single 
classifier to mold a decision surface into exactly the right 
shape. 

¨  As a consequence, the classifier may perform well for part of 
the input space, but poorly in another part of the input space. 

¨  How can we overcome this problem? 
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Combining Classifiers 

¨  One natural idea is to try to combine multiple 
classifiers, each of which captures some aspect of 
the problem. 

¨  Together, the ensemble of classifiers may be able to 
model complex decision surfaces. 
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Boosting 

¨  Boosting is one method for combining multiple ‘weak’ classifiers into 
a single ‘strong’ classifier. 

¨  The approach is greedy.   We begin by selecting the best weak 
classifier (i.e., the one with lowest error on the training dataset). 

¨  We then repeat the following 3 steps until no improvement can be 
made or an error criterion has been reached: 
1.  Reweight the input vectors,  up-weighting those that were classified 

incorrectly by the last classifier selected. 
2.  Again select the best weak classifier, on the reweighted training data. 

3.  Linearly combine this classifier with the classifiers already selected, 
with an appropriate weighting. 
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Adaboost:  Reweighting 



Yoav Freund and Robert E. Schapire (1996). Experiments with a new 
boosting algorithm. Machine Learning: Proceedings of the Thirteenth 
International Conference,148–156. 

Adaboost 

Yoav Freund Robert Schapire 
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AdaBoost 

¨  AdaBoost (Adaptive Boosting) is probably the most 
popular form of boosting. 

¨  We seek an optimal classifier of the form 
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AdaBoost: Learning the Parameters 
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AdaBoost: Learning the Parameters 
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AdaBoost: Learning the Parameters 
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where Ic  and Ie  are the index sets of inputs correctly 
and incorrectly classified by the kth  weak classifier, respectively.
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AdaBoost: Learning the Parameters 

 

Thus we seek the parameters that minimize
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AdaBoost: Learning the Parameters 
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AdaBoost: Learning the Parameters 
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AdaBoost: Learning the Parameters 
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Weights 
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Thus the weight for an input decreases if the current weak classifier

classifies it correctly, and increases if it classifies it incorrectly.

 

The amount of the change depends on the margin:

inputs with a large negative margin increase the

weight a lot, inputs with a large positive margin 

decrease the weight a lot.



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

16 

Convergence 

¨  Boosting enjoys a very strong convergence property:   
¤ Convergence is not generally monotonic.   

¤ However, as the number of iterations à     , error on the 
training dataset à 0: 

!
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Generalization 

¨  Adaboost is found empirically to have good 
generalization properties: 
¤ As the number K of weak classifiers grows, the error on 

the test set tends to decrease and then level off 

¤ Unlike many other methods, Adaboost does not always 
suffer from overlearning, even for large K. 

¤ The error on the test set tends to decrease even after 
the error on the training set is 0. 
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Limitations 

¨  Adaboost is not probabilistic, and thus does not 
provide a measure of confidence for each 
classification. 

¨  Can be sensitive to noise and outliers 
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Example 
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¨  Example 
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Boosting in MATLAB 

¨  MATLAB’s Statistics Toolbox provides various 
boosting algorithms through the function 
fitensemble(). 


